Cyanobacterial Mn-catalase ‘KatB’: Molecular link between salinity and oxidative stress resistance
نویسندگان
چکیده
Catalases are ubiquitous enzymes that detoxify H2O2 in virtually all organisms exposed to oxygen. The filamentous, nitrogen-fixing cyanobacterium, Anabaena PCC 7120, shows the presence of 2 genes (katA and katB) that encode Mn-catalases. We have recently shown that pre-treatment of Anabaena with NaCl causes substantial induction of the KatB protein, which consequently leads to increased oxidative stress resistance in that cyanobacterium. Interestingly, when compared to the wild-type, the katB mutant shows decreased growth and impaired photosynthetic activity in the presence of NaCl. Furthermore, the NaCl-treated katB mutant is extremely sensitive to H2O2. In this study, the ultrastructural changes occurring in the katB mutant and the wild-type Anabaena cells are analyzed to understand the cellular basis of the above-mentioned protective phenomena. Other data show that a wide variety of osmolytes induce katB expression in Anabaena, indicating that katB is a genuine osmo-inducible gene. These results have important biotechnological implications for the development of novel cyanobacterial biofertilzers and transgenic plants with improved resistance to salinity.
منابع مشابه
A Salt-Inducible Mn-Catalase (KatB) Protects Cyanobacterium from Oxidative Stress.
Catalases, enzymes that detoxify H2O2, are widely distributed in all phyla, including cyanobacteria. Unlike the heme-containing catalases, the physiological roles of Mn-catalases remain inadequately characterized. In the cyanobacterium Anabaena, pretreatment of cells with NaCl resulted in unusually enhanced tolerance to oxidative stress. On exposure to H2O2, the NaCl-treated Anabaena showed red...
متن کاملCharacterization of a peroxide-resistant mutant of the anaerobic Bacterium bacteroides fragilis.
A Bacteroides fragilis mutant resistant to hydrogen peroxide and alkyl peroxide was isolated by enrichment in increasing concentrations of hydrogen peroxide. The mutant strain was constitutively resistant to 100 mM H2O2 and 5 mM cumene hydroperoxide (15-min exposure). In contrast, the parent strain was protected against <10 mM H2O2 when the peroxide response was induced with a sublethal concent...
متن کاملOxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide.
Survival of Bacteroides fragilis in the presence of oxygen was dependent on the ability of bacteria to synthesize new proteins, as determined by the inhibition of protein synthesis after oxygen exposure. The B. fragilis protein profile was significantly altered after either a shift from anaerobic to aerobic conditions with or without paraquat or the addition of exogenous hydrogen peroxide. As d...
متن کاملRegulation of Bacteriodes fragilis katB mRNA by oxidative stress and carbon limitation.
Regulation of the katB catalase gene in the anaerobic bacterium Bacteroides fragilis was studied. Northern blot hybridization analyses revealed that katB was transcribed as an approximately 1.6-kb monocistronic mRNA. The levels of katB mRNA increased > 15-fold when anaerobic, mid-logarithmic-phase cultures were exposed to O2, O2 with paraquat, or hydrogen peroxide. Under anaerobic conditions, t...
متن کاملCatalases Promote Resistance of Oxidative Stress in Vibrio cholerae
Oxidative stress is a major challenge faced by bacteria. Many bacteria control oxidative stress resistance pathways through the transcriptional regulator OxyR. The human pathogen Vibrio cholerae is a Gram-negative bacterium that is the causative agent of cholera. V. cholerae lives in both aquatic environments and human small intestines, two environments in which it encounters reactive oxygen sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016